We Love Calculus AB
 1-2
 Limits

One sided limits:

Examine: $f(x)=x^{2}-4$
Left-hand Limits -

$$
\lim _{x \rightarrow 1^{-}} f(x)=-3
$$

Right-hand Limits -

$$
\lim _{x \rightarrow 1^{+}} f(x)=-3
$$

Theorem - The existence of a limit
$\lim _{x \rightarrow a} f(x)$ only exists if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{\mathrm{x} \rightarrow a^{+}} f(x)$
Does $\lim _{x \rightarrow 1} f(x)$ exist? If so, what is it? - 3

$$
\operatorname{mox}_{-1^{-}} f(x)=-7
$$

$$
\lim _{x \rightarrow-1} F(x)=\rightarrow
$$

$$
F(-1)=\varnothing
$$

Examine the graph of

$$
f(x)=\frac{1}{x}
$$

Why do we even need this?!?

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty
$$

How is evaluating a limit different from evaluating a function? Consider:

$$
\begin{gathered}
f(x)=x^{3}+3 x^{2}-2 x-3 \\
\lim _{x \rightarrow-2^{-}} f(x)=5 \\
\lim _{x \rightarrow-2^{+}} f(x)=5 \\
\lim _{x \rightarrow-2} f(x)=5 \\
f(-2)=5
\end{gathered}
$$

New Concept

$$
\lim _{x \rightarrow 2} f(x)=2
$$

All evidence when examining the values close to $x=2$ indicates that the y value should equal 2 (but it doesn't have to.)

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty
$$

$$
\lim _{x \rightarrow 0} f(x)=\varnothing
$$

